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1. Quick portfolio

Education:
» Undergraduate school — Xi’an Jiaotong Liverpool university; Rank 1
BEng Mechatronics and Robotic System

« Graduate school — Yale University
MS Mechanical engineering & Material Science

» Grab Lab — Supervisors: Prof. Aaron Dollar
» Social Robotics Lab — Supervisors : Prof. Brian Scassellati

Tianyi Xiang
Scazlab

Yale Social Robotics Laboratory

A2 10 followers @ 51 Prospect Street, New Haven, CT 06...

Grasping & Manipulation, Rehabilitation Robotics, and Biomechanics



1. Quick portfolio

"Real-to-Sim via End-to-End Differentiable Simulation and
Rendering"

Research interest:

» Intersection of physics-based modeling and
machine learning

» Perception & Motion planning

» Optimization

» Mechanics (trivial)

Yifan Zhu, Tianyi Xiang, Aaron Dollar, Zherong Pan

IEEE Robotics and Automation Letters (RA-L 2024),
Manuscript submitted for publication.

&
"Development of a Simple and Novel Digital Twin

Framework for Industrial Robots in Intelligent Robotics
Manufacturing”

Tianyi Xiang, Borui Li, Xiaonan Pan, Quan Zhang

20th International Conference on Automation Science and
Engineering (CASE 2024).

EO

Publications:

1. CASE 2024; first author

2. 1CAC 2024; first author

3. RA-L 2024 (submitted); second author

"A Novel Approach to Grasping Control of Soft Robotic
Grippers based on Digital Twin"

Tianyi Xiang, Borui Li, Quan Zhang, March Leach, Enggee
Lim

29th International Conference on Automation and Computing
(ICAC 2024).
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2. Common research gaps of robots in uncertain worlds
e

Physics properties
of sponge and plate?

Common problem: robots lack
an Identification of

Manipulable object: perfect 3D mesh, mass

of inertia, and friction.
Collision models (ground, walls): 3D mesh

and friction.

Contact rich manipulation: washing dishes



3. Solution & Research interest

Optimization based ML

& sampling based!

Solution & Research interest:

Physics-Informed Machine
L_earning in Robotics

Especially, | focus on
differentiable simulator

d(Fypsim, Freal)
Pushing — Learned Simulator

Advantage: Extract physics models, e.g.
perfect 3D mesh, mass of inertia, friction.




Previous Researches




Private Repository now:
» Later maybe open-source!

End-to-End system identification
via differentiable simulation and
rendering

[1] Y. Zhu, T. Xiang, A. Dollar, and Z. Pan, “Real-to-Sim via End-to-End

Differentiable Simulation and Rendering”. RA-L 2024

AARON M. DOLLAR




Research gap of classical computer vision

| BundleSDF CVPR 2023
Foundation Pose CVPR 2024 (Highlight)

Drawback:
1. 3D Mesh is not completed.
2. Physical properties are missing, e.g. inertia, mass,

friction.
which are significant for contact rich manipulation.




Research gap of prior differentiable simulation

» - pre-known and
‘ . )\

well defined at
beginning!

\§\
) " B

[1] “Learning to Slide Unknown Objects with Differentiable Physics Simulations,” RSS 2020

Assumption: pre-known shapes and appearances of the objects
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System identification: differentiable simulation and rendering
e —

Optimized Variables f

Object Oriented Point Cloud P
)-#‘t{\,.‘. I

Indicator Grid Mesh

Observed Images

.....

Differentiable
»|  Simulator & Rendered Image Lyender
Renderer
Terrain Point Cloud P4 7y
o N .”:‘.\—_
= =

Physical Parameters M, 1 =

Robot Trajectory & Forces e?, ft — 4= (radient Flows

Y. Zhu, T. Xiang, A. Dollar, and Z. Pan, “Real-to-Sim via End-to-End Differentiable

Simulation and Rendering”. RA-L 2024 submitted
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Results

| Novel View Synthesis | Train Dynamics Error Test Dynamics Error
Object | MSE| SSIM 1t PSNR t | Unilateral Chamfer (mm)  Pos.(mm)  Rot.(%) 7! | Unilateral Chamfer (mm)  Pos.(mm)  Rot.(%)
Box ‘ 0.00312 0.950 25.1 | 1.99 12.2 0.749 0.107 3.50 11.6 233
Drill | 0.00413 0.942 24.0 491 15.1 3.85 0.0970 8.21 12.3 12.7
TABLE 1

NOVEL VIEW SYNTHESIS AND DYNAMICS PREDICTION ERRORS FOR THE SIMULATED EXPERIMENTS

Train Push Train Trajectory Test Trajectory 1 Test Trajectory 2 Test Trajectory 3

Fig. 8. Train and test results of the physical experiments. Each row shows the results from an object. The columns from left to right are: 1) the robot’s

push to collect the training data, 2) the optimized object position at the end of the train trajectory, and 3)-5) those at the end of the three different test

trajectories. The predicted object poses with the optimized 6 highlighted with a yellow silhouette are overlaid with the ground-truth object and robot, and 12
the background rendered from the optimized simulator. [Best viewed in color.]



Appendix: basic principle: Differentiable simulator, DiffSDFsim

Error differentiate at

rendered images.

environment
observations

shape parameters
1.5-
2 L0

error function

E(6)

E 0.5
3D 2 o0 forward
_”.-_- differentiable simulator

reconstruction - ?’
& physics parameters |-«— ackprop
(friction,mass,etc) Ad

M. Strecke and J. Stueckler, “DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes,” in 2021 International
Conference on 3D Vision (3DV), Dec. 2021, pp. 96-105. doi: 10.1109/3DV53792.2021.00020.
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https://doi.org/10.1109/3DV53792.2021.00020

Appendix: Differentiable simulator basic principle

ﬁmulator function \

Initial state i '
. Zl:‘t Sngulatled tmjectojq/
! C 1 ot e o5 N
External forces . T Staggered 1 b[: (IE, .CU)
projections <
Physical algorithm |_—
arameters .
p >, M,c—p V(,{,L,M,G)‘C Real trajectory
(z°, !, ..., zT)

<

M. Strecke and J. Stueckler, “DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes,” in 2021
International Conference on 3D Vision (3DV), Dec. 2021, pp. 96-105. doi: 10.1109/3DV53792.2021.00020.
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Active project: Simulator and
robotics Interactive action for
object segmentation

SAM mask generation and simulator aided segmentation correction

AARON M. DOLLAR
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Research gap: over-segmentation and under-segmentation of SAM

Segmentation Anything Model (SAM) results:

under-segmentation over-segmentation

Chili and brick are Frog’s back is
under-segmented over-segmented




Research gap of robot interactive action segmentation works

Solution: use simulator, calculate
error at rendered image

Criticism of Ransac
for belief update

Belief State _ Action
Estimator Belief  planner

Observationk

Promptable /= 5
Segmenter w__“

BottomUp & TopDown

Action

Confident Set

v, P

® ve
: ) —_— P w P
Uncertain Uncertain . - @
Region u, Region 1., Hypotheses
Initial Observation Factored Hypotheses Distribution Embodied Interaction

Research gap: Good at under-segmentation but doesn’t work
at all at over-segmentation

[1]X. Fang, L. P. Kaelbling, and T. Lozano-Pérez, “Embodied Uncertainty-Aware Object Segmentation,” Aug. 08, 2024, arXiv: i
arXiv:2408.04760. IROS 2024. doi: 10.48550/arXiv.2408.04760.



https://doi.org/10.48550/arXiv.2408.04760

Opensource!
» Perception pipeline: GitHub Code
» Motion Planning Pipeline: GitHub Code

Liquid Manipulation

liquid manipulation framework based on category-level pose, shape estimation and a
pouring action optimizer.

ScazlLab

Yale Social Robotics Laboratory

er Science, Cognitive Science, and Mechanical Engineering
S

51 Prospect Street
New Haven, CT 06520-8285

phone: (203) 432-1219

A 10 followers (® 51 Prospect Street, New Haven, CT 06... fax: (203) 432-0593 18

scaz@cs.qalc.cdu


https://github.com/Tianyi20/category-level-estimation-ROS-noetic
https://github.com/Tianyi20/liquid_manipulation_moveit

Research gap & overview framework

(g category-level
y pose &
"+ Single RGB dimension
- - i detector
Resea rCh g a p . — 4 Observation

. Pose, Dimension [
3D point :
cloud
pruning

Generalizability + optimization

Filter

Posestamped H Vector 3 Dimension

Collision ‘ Optimized »
aalin i [ Moveit Motion IPL"‘ Pouring Action
g PIannmg Plpellne A Optimization Solver
; b ubtrame
al %
1l

Unseen cups & bottles with
shapes and patterns in uncertain
scene, incorporating with
optimization trajectory with
constrain.

Moveit Scene L
Monitoring Pipeline j
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‘ ~ 6DOF force sensor:

© monitoring mass loss

vQ.ptimized offset point

.vc ‘ Cartesian path ee

-

/-:l step = 0.001

: Optimized offset |

angle 6
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Opensource!
» Unity & MATLAB: Tianyi20/DT IRB120

Efficient real-time teleoperation
for Industrial robots

[1]T. Xiang, B. Li, X. Pan, and Q. Zhang, “Development of a Simple and Novel Digital Twin Framework for
Industrial Robots in Intelligent Robotics Manufacturing,” in 2024 IEEE 20th International Conference on

Automation Science and Engineering (CASE), Aug. 2024, pp. 4187-4193. doi:
10.1109/CASE59546.2024.10711459.
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https://doi.org/10.1109/CASE59546.2024.10711459
https://github.com/Tianyi20/DT_IRB120

Research gap: teleoperation for industrial robots

Collaborative robots Industrial robots

Communication when teleoperation doesn’t work well at
Industrial robot, cause the CPU is always low cost.

22



Framework of Digital Twin System

m Web-Based Platform
Physical A Alert — — Digital

Numerical
Rapid Execution

“I=7 | Database Optimization

Iteration
1/0 Service

Web-based Dashboard

Socket

QUL |
E |

Vision il e - = Present

Joint
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Forward

Kinematics —— e
Real Time
Joint Data {i} Monitoring
Control

TCP;Quaternion et
1/0 System Ll Operations

Joint/Linea
r Control

Control _ " Rapid Execution
o Planning

Fig. 2: The Framework of the Proposed Digital Twin System for the Stacking Robot Workstation

Thread #1

Thread #2
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Result & Evaluation

Task in Physical Twin Task in Digital Twin (Unlty 3D) Task in MATLAB Solver

e
=
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Followed Imitation Learning

*»

-

-

predicted predicted

actions actions ”

&

s ¢ implicit Poli -~
Explicit Policy mplicit Policy

]
argmin Fjy(o.,a)

Fg (O) acA 4

©

o

®
1

[1]P. Florence et al., “Implicit Behavioral Cloning,” Sep. 01, 2021, arXiv: arXiv:2109.00137. doi:
10.48550/arXiv.2109.00137.
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https://doi.org/10.48550/arXiv.2109.00137

Efficient teleoperation with
underactuated flexible gripper
and Industrial robots

[1]T. Xiang, B. Li, Q. Zhang, M. Leach, and E. Lim, “A Novel Approach to Grasping Control of Soft Robotic
Grippers based on Digital Twin,” in 2024 29th International Conference on Automation and Computing (ICAC),
Aug. 2024, pp. 1-6. doi: 10.1109/ICAC61394.2024.10718822.
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Research gap & Result

» Research gap: Efficient teleoperation
with pneumatics flexible gripper in
industrial robots.

» Result: Extremely efficient communication
rate when teleoperation, around 17 ms.

27



Method: piecewise constant curvature kinematics

Air Pump fspe::ific (fitting) Arc findependent P.OSIUO,H
Parameters Orientation

Pneumatic
Actuator
Controller
P

k-rl-..ll 9-'lv..l! I‘Ll

Actuator ) Config. )
Space fs}eciﬁc (fitting) Space fi;dependenr Space

Fig. 4: Four Piecewise Robot Independant Mapping Soft Gripper: (a): Flexible gripper with robot working screenshot (b):
Assembled Together Four-piece Soft gripper constant curvature model with four homogeneous transformation matrix 7" in

28
Unity 3D; (b): Arc Configuration Space for only One piece soft gripper when angle ¢ rotates the arc to new X’ axis.



Some miscellaneous research
projects




Some miscellaneous research projects

DIY mars Rover & ROS SLAM
“navigation

Task planning: PDDL-stream task
and motion planning (TAMP)

n
@]
. [S v : o+
.;?' { 4 . = ‘ Continuous tracking Steer at corner Refresh at U-shaped corner
Criticism: However, PDDL itself is
only an open-loop planner. AGV with |

\.m,x The distance between two adjacent poin
t.L AR~ B YE @] % omi®

[1]C. R. Garrett, T. Lozano-Pé&ez, and L. P. Kaelbling, “PDDLStream: TEE

Integrating Symbolic Planners and Blackbox Samplers via Optimistic P I—C CO ntrOI i N wosh |

Adaptive Planning,” Mar. 23, 2020, arXiv: arXiv:1802.08705. doi: e - g | (AN

10.48550/arXiv.1802.08705. simulation ;;%_ 5 ..Jmu I ‘hh I L f \‘h
e ) \ ‘U f

20 25 30

s 1o oo’ 3 T gexaftarget point



https://doi.org/10.48550/arXiv.1802.08705

Future research plans




Overview of research plans

(1): How to infer world models for various types of physics
phenomena, like different material properties, introducing
various constrains.

(3): After the system identification, how to implement a real-to-

sim-to-real method as downstream control?

(3): Before the system identification, how to design upstream
task planning to inform when and where to inform our system
Identification?

(4): How to build better hardware while considering sensing,
perception, control, and hardware?

32



1. System i1dentification for (1)
flexible & (2) articulated & (3)
multiple bodies

How to combine extra physics constraints for different objects
categories? Especially, dealing with flexible bodies?



Research gap: system identification for (1) flexible body

BundleSDF CVPR 2023

Robot arm interaction Optimized Variables

Object Oriented Point Cloud P

Our work: RA-L 2024

Mesh

Indicator Grid

Observed Images

Terrain Point Cloud P

Differentiable v
»| Simulator & Rendered Image Lrender
Renderer

=

Physical Parameters M, 1 =

Robot Trajectory & Forces e?, i

ft—

'} \
—

4= (radient Flows

Problem: infer flexible material properties, e.g. 3D mesh,

mass-of-inertia, friction

34



Research gap: physical properties for soft tissue in surgical robots
-]

Real-to-Sim Registration of Deformable Soft Tissue with Position- Real-to-Sim Deformable Object Manipulation: Optimizing Physics
Based Dynamics for Surgical Robot Autonomy, ICRA 2021 Models with Residual Mappings for Robotic Surgery, ICRA 2024

video frames

Distance stiffness Shape-matching stiffness

Common Drawbacks:
(1) Initial 3D shapes and patterns are well-defined and pre-given.
(2) The model used is positional static. It cannot deal with dynamic online changes.

(3) Some properties are missing to be optimized: Young's modulus, strain, stress, friction..
35



Research gap: system identification for (2) articulated bodies
-]

Articulated body

Principal joint

Created recursively by joining two articulated
bodies

36



Research gap: system identification for (3) multiple bodies

37



Potential Solution: introduce various constrains
e

DaxBench: Benchmarking Deformable Object Manipulation with

PlasticineLab: A Soft-Body Manipulation Benchmark with
Differentiable Physics

Elcxen alE st

i

Move TripleMove Torus Rope Writer

A/ ¥~
.22&1 07
2 A
L LR
3 4

Pinch Chopsticks RollingPin

DaXBench is a differentiable simulation framework for deformable object manipulation. While existing work PlasticineLab is a differentiable physics benchmark including a diverse collection of soft body manipulation
often focuses on a specific type of deformable objects, DaXBench supports fluid, rope, cloth, etc; it provides

a general-purpose benchmark to evaluate widely different DOM methods, including planning, imitation

learning, and reinforcement learning. DaXBench combines recent advances in deformable object simulation . i o
With JAX. = hiab: iekfoitanee compUtaHoral feamenor All DOM tasks in BetBeneh are wepged with the posing many underexplored challenges to robotic agents. We evaluate several existing RL methods and

OpenAl Gym API for easy integration with DOM algorithms. gradient-based methods on this benchmark.

tasks. In each task, the agent uses manipulators to deform the plasticine into a desired configuration. The
underlying physics engine supports differentiable elastic and plastic deformation using the DiffTaichi system,

38



2. Downstream control: real-to-
sim-to-real with world model
prediction

After predicting the world model, how to train robots to work in that environment?



2. Research gap: Real-to-sim-to-real with system identification

a Real-to-sim
) transfer of

Real-to-sim transfer of policies—\

Downstream control
policy

mon fine-tuning=——=\

° Sim-to-real with co-training
;

40



3. Upstream task planning:
where and when to inform our
world model prediction?

When being placed in the wild, when and where should robots to invoke the world
model prediction method?



2. Research gap: upstream task planning for system identification

Upstream task planninqg

~
Problem (P)
]+ - Plan

Domain

System identification

Downstream control
of task

42



4. Morphological Optimization: Co-
Design Mechanism with Sensing,
Perception, and Control.

How to build better hardware while considering sensing, perception, control, and
hardware?



4. Research gap: physics design and control are always separated
e —

Solution: co-optimization of both morphology and control.

End-to-End Framework -+ differentiable

7

morphology
parameters @

\ End-to-End morphology
loss {md optimization pipeline: optimize
gradients NN morphology parameters

\ | / 2 _ -,\
s ‘ = J '\. g . Loy st
. .\z’ "T .
robot poliz:.)' &'

iy

[1]M. Li, R. Antonova, D. Sadigh, and J. Bohg, “Learning Tool
Morphology for Contact-Rich Manipulation Tasks with
Differentiable Simulation,” Nov. 04, 2022, arXiv: 4
arXiv:2211.02201. doi: 10.48550/arXiv.2211.02201.



https://doi.org/10.48550/arXiv.2211.02201

The End

Thank you for listening.
Any questions?

45



	幻灯片 1
	幻灯片 2: Research summary structure
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7: Previous Researches
	幻灯片 8: End-to-End system identification via differentiable simulation and rendering
	幻灯片 9: Research gap of classical computer vision
	幻灯片 10: Research gap of prior differentiable simulation
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15: Active project: Simulator and robotics interactive action for object segmentation 
	幻灯片 16
	幻灯片 17
	幻灯片 18:  Liquid Manipulation
	幻灯片 19: Research gap & overview framework
	幻灯片 20: Result
	幻灯片 21: Efficient real-time teleoperation for industrial robots
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26:  Efficient teleoperation with underactuated flexible gripper and industrial robots
	幻灯片 27
	幻灯片 28
	幻灯片 29: Some miscellaneous research projects
	幻灯片 30
	幻灯片 31: Future research plans
	幻灯片 32
	幻灯片 33: 1. System identification for (1) flexible & (2) articulated & (3) multiple bodies
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39: 2. Downstream control: real-to-sim-to-real with world model prediction
	幻灯片 40
	幻灯片 41: 3. Upstream task planning: where and when to inform our world model prediction?
	幻灯片 42
	幻灯片 43: 4. Morphological Optimization: Co-Design Mechanism with Sensing, Perception, and Control.
	幻灯片 44
	幻灯片 45: The End

